UniWalk: Explainable and Accurate Recommendation for Rating and Network Data

نویسندگان

  • Haekyu Park
  • Hyunsik Jeon
  • Junghwan Kim
  • Beunguk Ahn
  • U. Kang
چکیده

How can we leverage social network data and observed ratings to correctly recommend proper items and provide a persuasive explanation for the recommendations? Many online services provide social networks among users, and it is crucial to utilize social information since recommendation by a friend is more likely to grab attention than the one from a random user. Also, explaining why items are recommended is very important in encouraging the users’ actions such as actual purchases. Exploiting both ratings and social graph for recommendation, however, is not trivial because of the heterogeneity of the data. In this paper, we propose UniWalk, an explainable and accurate recommender system that exploits both social network and rating data. UniWalk combines both data into a unified graph, learns latent features of users and items, and recommends items to each user through the features. Importantly, it explains why items are recommended together with the recommendation results. Extensive experiments show that UniWalk provides the best explainability and achieves the stateof-the-art accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable and Explainable Friend Recommendation in Campus Social Network System

With the increasing popularity of social network systems, it’s valuable and important to provide well-designed and effective friend recommendation for users to achieve high loyalty of them. Although FOF is an effective and widely used friend recommendation algorithm, the straight-forward implementation of it needs increasingly large amount of computation power with the growth of the number of u...

متن کامل

Comprising the Empirical Equations of Runoff- Sediment Resulted from Sediment Rating Curves and Artificial Neural Network (Case Study: Ghadarkhosh Watershed, Ilam Province)

Being available the accurate data on carried sediment has accounted as an important factor for making decision about constructing of river structures and determining of dam life. To accomplish this object, a number methods have been proposed so that sediment rate curving as a hydrological method has been developed for doing it. Ignoring differences between season's values causes to lower the pr...

متن کامل

PERS: A Personalized and Explainable POI Recommender System

The Location-Based Social Networks (LBSN) (e.g., Facebook, etc.) have many factors (for instance, ratings, check-in time, location coordinates, reviews etc.) that play a crucial role for the Point-of-Interest (POI) recommendations. Unlike ratings, the reviews can help users to elaborate their opinion and share the extent of consumption experience in terms of the relevant factors of interest (as...

متن کامل

Visually Explainable Recommendation

Images account for a significant part of user decisions in many application scenarios, such as product images in e-commerce, or user image posts in social networks. It is intuitive that user preferences on the visual patterns of image (e.g., hue, texture, color, etc) can be highly personalized, and this provides us with highly discriminative features to make personalized recommendations. Previo...

متن کامل

Using Adjective Features from User Reviews to Generate Higher Quality and Explainable Recommendations

Recommender systems have played a significant role in alleviating the “information overload” problem. Existing Collaborative Filtering approaches face the data sparsity problem and transparency problem, and the contentbased approaches suffer the problem of insufficient attributes. In this paper, we show that abundant adjective features embedded in user reviews can be used to characterize movies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07134  شماره 

صفحات  -

تاریخ انتشار 2017